On symmetry of traveling solitary waves for dispersion generalized NLS
نویسندگان
چکیده
منابع مشابه
On the Existence of Solitary Traveling Waves for Generalized Hertzian Chains
We consider the question of existence of “bell-shaped” (i.e. non-increasing for x > 0 and non-decreasing for x < 0) traveling waves for the strain variable of the generalized Hertzian model describing, in the special case of a p = 3/2 exponent, the dynamics of a granular chain. The proof of existence of such waves is based on the English and Pego [Proceedings of the AMS 133, 1763 (2005)] formul...
متن کاملSpectra of Linearized Operators for NLS Solitary Waves
Nonlinear Schrödinger equations (NLSs) with focusing power nonlinearities have solitary wave solutions. The spectra of the linearized operators around these solitary waves are intimately connected to stability properties of the solitary waves and to the long-time dynamics of solutions of NLSs. We study these spectra in detail, both analytically and numerically.
متن کاملGeneralized solitary waves and fronts
Generalized solitary waves arise in many physical systems, including water waves with surface tension and multi-layered fluids [7,19,21,22]. They are nonlinear long waves consisting of a localized central core and periodic non-decaying oscillations extending to infinity. They arise whenever there is a resonance between a linear long wave speed of one wave mode in the system and a wave speed wit...
متن کاملSymmetry of Solitary Water Waves with Vorticity
Symmetry and monotonicity properties of solitary water-waves of positive elevation with supercritical values of parameter are established for an arbitrary vorticity. The proof uses the detailed knowledge of asymptotic decay of supercritical solitary waves at infinity and the method of moving planes.
متن کاملPlanar Traveling Waves for Nonlocal Dispersion Equation with Monostable Nonlinearity
In this paper, we study a class of nonlocal dispersion equation with monostable nonlinearity in n-dimensional space ut − J ∗ u+ u+ d(u(t, x)) = ∫ Rn fβ(y)b(u(t− τ, x− y))dy, u(s, x) = u0(s, x), s ∈ [−τ, 0], x ∈ Rn, where the nonlinear functions d(u) and b(u) possess the monostable characters like Fisher-KPP type, fβ(x) is the heat kernel, and the kernel J(x) satisfies Ĵ(ξ) = 1 − K|ξ|α + o(|ξ|...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinearity
سال: 2020
ISSN: 0951-7715,1361-6544
DOI: 10.1088/1361-6544/ab74b2